
	

 
Beyond Validation: using 
programmed diagnostics to 
learn about, monitor, and 
successfully complete your 
DH project 
 
Martin	Holmes	
mholmes@uvic.ca	
University	of	Victoria,	Canada	
	
Joey	Takeda	
joey.takeda@gmail.com		
University	of	British	Columbia,	Canada	
	

	 	
Schema-based	 validation	 of	 XML	 documents	 has	

long	 been	 a	 fundamental	 tool	 for	 quality	 control	 in	
digital	 edition	 projects,	 and	 the	 emergence	 of	 richer	
schema	 languages	 and	 adjuncts	 such	 as	 Schematron	
has	 greatly	 improved	 the	 constraints	 and	 controls	
available	to	XML	authors	and	encoders	(Jacinto	et	al.	
2002).	 However,	 schema-based	 validation	 typically	
takes	 place	 at	 the	 document	 level,	 whereas	 “most	
programs	that	use	XML	require	information	that	is	not	
encoded	 in	 the	 XML	 instance	 or	 in	 the	 schema	 that	
governs	 it”	 (Vorthmann	&	Robie	2001).	The	modern	
digital	 edition	 project	 typically	 consists	 of	 multiple	
documents	with	 large	 numbers	 of	 pointers	 between	
them:	 links	 between	 named	 entities	 and	
personographies,	 placeographies	 and	 bibliographies;	
pointers	to	external	documents	and	fragments,	images	
and	 other	 media;	 and	 similar	 complex	
interrelationships	 within	 the	 collection,	 and	 to	
external	 resources	 and	 authorities.	 These	
relationships	need	to	be	tested,	checked,	and	validated	
too,	 but	 it	 is	 impractical	 to	 do	 this	 using	 document-
level	schemas.	As	Durand	et	al.	(2009)	point	out,	“such	
testing	requirements	are	in	fact	closer	to	conventional	
system	 or	 software	 testing	 requirements	 than	 to	
document	testing	in	a	narrow	sense.”	Most	large-	and	
medium-scale	 projects	 develop	 their	 own	 methods,	
programmed	and/or	impromptu,	for	addressing	these	
problems,	 and	 these	 have	 been	 quite	well-described	
and	 documented	 for	 enterprise-level	 and	 corporate	
contexts	 (for	 instance,	 see	 the	 papers	 presented	
presented	at	the	International	Symposium	on	Quality	

Assurance	 and	 Quality	 Control	 in	 XML,	 particularly	
Waldt	2012),	but	little	has	been	published	on	project-
level	diagnostic	 testing	 for	XML-based	digital	edition	
collections	(see	Rahtz,	2007)		

In	our	work	as	part	of	Endings,	an	umbrella	project	
that	 comprises	 four	 diverse	 digital	 edition	 projects	
from	 different	 fields,	 we	 have	 been	 developing	 a	
structured	 approach	 to	 implementing	 methods	 for	
checking	 and	 enforcing	 project	 correctness,	
consistency,	and	coherence,	which	we	will	describe	in	
this	paper.	Influenced	no	doubt	by	Star	Trek,	we	have	
long	referred	to	these	processes	as	“diagnostics”,	and	
in	 our	 description	 we	 follow	 the	 franchise	 tradition	
detailed	 in	 Sternbach	 and	 Okuda	 (1991)	 in	 dividing	
diagnostics	 into	 levels;	 however,	 we	 depart	 from	
convention	 in	 ordering	 our	 levels	 from	 most	
granular/least	comprehensive	up	to	the	most	general.	
For	each	level,	we	provide	real	examples	of	processes	
run	on	one	of	our	projects.	

We	stress	that	these	diagnostics	are	built	on	top	of	
a	solid	basis	of	RelaxNG	and	Schematron	schemas.	In	
the	 case	 of	 our	 projects,	 we	 use	 highly-customized	
versions	 of	 the	 TEI	 schema	 (all	 TEI-compliant)	 in	
addition	 to	 project-specific	 Schematron	 rules,	 which	
not	only	police	tagging	practices	(e.g.	enforcing	the	use	
of	 private	 URI	 schemes	 in	 pointing	 attributes,	 and	
checking	 the	 presence	 of	 appropriate	 custom	 dating	
attributes	 for	 pre-Gregorian	 dates),	 but	 also	 style	
guide	 rules	 such	 as	 prohibiting	 the	 use	 of	 straight	
apostrophes	 in	 document	 text	 nodes	 (excepting	
computer	 code	 samples).	 Our	 diagnostic	 processes	
normally	 take	 the	 form	 of	 ant	 scripts	 and	 XSLT	
transformations,	and	are	run	on	a	Jenkins	Continuous	
Integration	server;	every	time	changes	are	committed	
to	a	project	repository,	the	Jenkins	server	checks	out	
the	 changes,	 validates	 all	 documents,	 and	 runs	 the	
entire	 set	 of	 diagnostics	 processes,	 providing	 the	
results	 in	 the	 form	of	a	public	web	page	such	as	 this	
one:	



	
Figure 1: A diagnostics output page from the Map of Early 

Modern London project. 
	

In	combination	with	this	paper,	which	is	intended	
to	be	a	useful	primer	and	guide,	we	have	developed	a	
Diagnostics	 project	 hosted	 on	 GitHub	
(http://github.com/projectEndings/diagnostics)	 that	
can	 be	 used	 by	 researchers	 whose	 digital	 edition	
projects	have	grown	to	the	point	where	ad	hoc	manual	
checking	 has	 become	 impractical.	 This	 tool	 provides	
generic	 referential	 integrity	 checking	 that	 can	 be	
applied	to	any	set	of	TEI	XML	files.	

Level 1 
Level	 1	 diagnostics	 provide	 project-level,	 as	

opposed	 to	 document-level,	 consistency	 checking	 to	
establish	 the	 internal	 coherence	 of	 the	 project,	
primarily	 through	 ensuring	 referential	 integrity.	We	
borrow	 the	 phrase	 “referential	 integrity”	 from	 the	
MLA’s	 “Guiding	 Questions	 for	 Vetters	 of	 Scholarly	
Editions”	 (2011),	 which	 advises	 peer-reviewers	 of	
digital	editions	that	link	to	multiple	databases	to	see	if	
“referential	 integrity	 [is]	 enforced	 within	 the	
database(s).”		This	includes	checking	for	non-existent	
pointers,	 duplicate	@xml:ids	 across	 the	 project,	 and	

erroneously	 encoded	 references	 (e.g.	 tagging	a	place	
name	 as	 a	 bibliography	 reference).	 Ensuring	
referential	 integrity	 is	 particularly	 complex	 for	
projects	 that	 use	 “abbreviated	 pointers”	 to	 facilitate	
internal	linking	(see	TEI	Consortium	(2016)),	since	it	
may	not	be	obvious	to	the	encoder	which	resource	is	
being	referenced	by	a	pointer.	Thus,	the	first	 level	of	
diagnostics	 checks	 both	 whether	 or	 not	 an	 object	
pointed	 to	 actually	 exists	 and	 whether	 or	 not	 the	
markup	correctly	represents	the	relationship	between	
the	element	and	the	target	resource.	For	 instance,	 to	
check	all	instances	of	the	relationship	shown	in	Fig.	2,	
a	number	of	different	tests	are	actually	done:	

	

Figure 2: a simple referential integrity check. 
	

1. Every	 <name	 type=”org”>	 points	 at	 an	
@xml:id	which	exists	in	the	project.	

2. The	 element	 pointed	 at	 by	 <name	
type=”org”>	 is	 an	 <org>	 element	 in	 the	
ORGS1.xml	document.	

3. Every	 <name>	 element	which	 points	 at	 an	
<org>	 element	 in	 ORGS1.xml	 has	
@type=”org”.	

For	 small-scale	 projects,	 this	 kind	 of	 referential	
integrity	 check	 could	 be	 accomplished	 with	
Schematron,	since	a	Schematron	rule	using	XPath	2.0	
can	read	external	documents,	but	for	a	project	of	any	
significant	 size,	 this	 is	 impractical.	 For	 example,	
Schematron	 checks	 to	 confirm	 the	 rules	 above	 may	
add	around	six	seconds	to	document	validation	in	the	
Oxygen	 XML	 Editor,	 causing	 frustration	 for	 editors,	
while	 simply	 checking	 that	 a	 linked	 location	 exists	
would	require	the	processing	of	over	a	thousand	files	
in	this	project,	since	each	location	is	a	distinct	file.		
Level	2	
	 While	 Level	 1	 diagnostics	 generally	 focus	 on	
coherence	and	consistency,	Level	2	is	more	concerned	
with	 completeness.	 Level	 2	 diagnostics	 provide	
progress	 analysis,	 generate	 to-do	 lists,	 and	 identify	



situations	that	may	indicate	error,	but	require	human	
judgement.	These	include	cases	in	which:	

• Two	bibliography	or	personography	entries	
appear	sufficiently	similar	that	they	may	be	
duplicates.	

• Several	<name>	elements	point	to	the	same	
authority	record,	but	the	text	of	one	of	them	
is	significantly	different	from	the	others,	so	it	
may	point	at	the	wrong	target.	

• A	document	in	the	project	is	not	linked	from	
anywhere	 else,	 and	 therefore	 cannot	 be	
“reached”.	

Such	 issues	 cannot	 be	 automatically	 rectified—
they	 are	 not	 necessarily	 errors—but	 they	 must	 be	
examined.	 Figure	 3	 shows	 an	 example	 of	 the	 first	
check,	 which	 uses	 a	 similarity	 metric	 to	 identify	
potential	duplicate	bibliography	entries.	

	
	
Figure 3: Results of a Level 2 diagnostic check that attempts 

to identify duplicate bibliography entries. 
	

At	Level	2,	we	also	generate	to-do	lists	for	specific	
sub-projects,	 providing	 a	 set	 of	 tasks	 for	 the	 project	
team	 to	 focus	 on	 in	 order	 to	 reach	 a	 milestone	 or	
publish	 a	 particular	 document.	 The	 definition	 of	
“done”	 for	 a	 specific	 document	 may	 transcend	 the	
document	 itself.	 For	 instance,	 before	 we	 deem	 a	
particular	 edition	 of	 a	 text	 publishable,	 we	 may	
require	 that	 all	 authority	 records	 (people,	 places,	
publications)	 linked	 from	 that	 document	 are	
themselves	 complete,	 so	 the	 to-do	 list	 for	 a	 given	
document	 may	 require	 work	 in	 a	 variety	 of	 other	
documents	in	the	project	

Level 3 
Armed	 with	 a	 comprehensive	 set	 of	 Level	 1	 and	

Level	2	diagnostics,	and	assuming	our	data	is	managed	
using	a	version-control	repository	such	as	Subversion	
or	Git,	we	 can	now	generate	diachronic	views	of	 the	
project's	progress.	A	script	can	check	out	a	sequence	
of	incarnations	of	the	project,	weekly	over	a	period	of	
months,	 for	 instance,	 and	 run	 the	 entire	 current	
diagnostic	suite	against	it;	we	can	then	combine	these	
snapshots	 to	 get	 a	 clear	 sense	 of	 how	 our	 work	 is	
proceeding.	 This	 also	 means	 that	 every	 time	 we	
develop	a	new	diagnostic	procedure,	we	can	apply	it	to	
the	entire	history	of	the	project	to	see	the	trajectory	of	
project	work	with	respect	to	the	datapoint	in	question.	
Two	 examples,	 this	 time	 from	 the	 Nxaʔamxcín	
Dictionary	 project	 (an	 indigenous	 dictionary	 project	
described	 in	 detail	 in	 Czaykowska-Higgins,	 Holmes,	
and	Kell	(2014))	appear	in	Figs	4	and	5	below.	Figure	
4	shows	the	number	of	completed	dictionary	entries	in	
orange,	rising	steadily	over	a	period	of	18	months,	and	
the	 number	 of	 occurrences	 of	 a	 known	 problem:	
duplicate	instances	of	the	same	gloss.	These	duplicates	
rise	 along	 with	 the	 number	 of	 entries	 until	 October	
2016,	when	 this	 issue	was	 added	 to	 our	 diagnostics	
process,	and	the	encoders	were	able	to	address	it.	

	
Figure 4: The number of instances of duplicate glosses, 
tracked against completed entries, in the Nxaʔamxcín 

Dictionary project. 
	
Fig.	5	shows	cases	of	broken	cross-references,	which	
also	 tend	 to	 increase	 along	 with	 the	 number	 of	
completed	entries,	but	we	can	see	from	the	graph	that	
the	issue	was	aggressively	addressed	in	two	separate	
campaigns	 in	 fall	 2015	 and	 summer	 2016.	 New	
instances	continue	to	appear,	however.	
	

	
	



Figure 5: The number of broken cross-references, tracked 
against completed entries. 

	
Fig.	 6,	 from	 a	 different	 project,	 shows	 how	 this	
approach	can	be	used	to	forecast	completion	dates	for	
tasks	in	a	project	based	on	the	progress	rate	so	far.	

	
Figure 6: Diachronic diagnostics used to project task 

completion dates. 
	

Conclusion 
As	Matthew	Kirschenbaum	(2009)	tells	us,	there	“is	

no	 more	 satisfying	 sequence	 of	 characters”	 than	
“Done.”	The	overall	purpose	of	a	digital	edition	project	
is	 to	 finish	and	publish	the	edition,	and	this	requires	
not	 only	 that	 the	 document-level	 encoding	 be	 valid,	
but	also	that	the	entire	dataset	be	coherent,	consistent,	
and	 complete.	 Programmed	 diagnostics	 enable	
projects	 to	 enforce	 coherence	 and	 consistency,	
manage	 the	workflow	 effectively,	 and	measure	 their	
progress	towards	completeness.		
	
Bibliography 
	
Czaykowska-Higgins,	E.,	Holmes,	M.,	and	Kell,	S.	(2014).	

“Using	 TEI	 for	 an	 Endangered	 Language	 Lexical	
Resource:	 The	 Nxaʔamxcín	 Database-Dictionary	
Project.”	Language	Documentation	&	Conservation	8:	1–
37.		

	
Modern	 Language	 Association.	 (2016)	 	 “Guidelines	 for	

Editors	 of	 Scholarly	 Editions.”	 Modern	 Language	
Association.	 Accessed	 September	 15.	
https://www.mla.org/Resources/Research/Surveys-
Reports-and-Other-Documents/Publishing-and-
Scholarship/Reports-from-the-MLA-Committee-on-
Scholarly-Editions/Guidelines-for-Editors-of-Scholarly-
Editions.	

	

Modern	Language	Association.	(2011)	“Guiding	Questions	
for	 Vetters	 of	 Scholarly	 Editions.”.	 Modern	 Language	
Association.	 Accessed	 October	 21.	
https://www.mla.org/content/download/3201/81158
/cse_guidelines_2011.pdf.	

	
Jacinto,	 M.	 H.	 ,	 Librelotto,	 G.	 R.,	 Ramalho,	 J.	 C.,	 and	

Henriques,	 P.	 R.	 (2002).	 “Constraint	 specification	
languages :	 comparing	 XCSL,	 Schematron	 and	 XML-
Schemas.”	
http://repositorium.sdum.uminho.pt/handle/1822/61
9.	

	
Kirschenbaum,	M.	(2009).	“Done:	Finishing	Projects	in	the	

Digital	 Humanities.”	 DHQ	 3	 (2).	
http://digitalhumanities.org:8081/dhq/vol/3/2/0000
37/000037.html.	

	
International	 Symposium	 on	 Quality	 Assurance	 and	

Quality	 Control	 in	 XML	 (2012)	 “Proceedings	 of	 the	
International	 Symposium	 on	 Quality	 Assurance	 and	
Quality	 Control	 in	 XML.”	 August	 6,	 2012.	
http://www.balisage.net/Proceedings/vol9/contents.h
tml.	

	
Rahtz,	 S.	 (2007).	 “Technology	 Overview	 and	 Discussion:	

Data	Capture,	Editing,	 and	Schemas.”	Oxford,	 February	
13.	 http://tei.it.ox.ac.uk/Talks/2007-02-13-oucs/talk-
editing.xml.	

	
Sternbach,	R.,	and	Okuda,	M.	 (1991).	Star	Trek,	 the	next	

Generation:	Technical	Manual.	New	York:	Pocket	Books.	
http://catalog.hathitrust.org/api/volumes/oclc/24648
561.html.	

	
Vorthmann,	 S.,	 and	 Robie,	 J.	 2001.	 “Beyond	 Schemas:	

Schema	 Adjuncts	 and	 the	 Outside	 World.”	 Markup	
Languages:	Theory	&	Practice	2	(3):	281–94.	

	
Waldt,	 D.	 2012.	 “Quality	 Assurance	 in	 the	 XML	 World:	

Beyond	 Validation.”	 Accessed	 September	 15.	
http://www.balisage.net/Proceedings/vol9/author-
pkg/Waldt01/BalisageVol9-Waldt01.html.	

	

	


